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The collision of a strong vortex with a surface is an important problem because
significant impulsive loads may be generated. Prediction of helicopter fatigue lifetime
may be limited by an inability to predict these loads accurately. Experimental results
for the impingement of a helicopter rotor-tip vortex on a cylindrical airframe show
a suction peak on the top of the airframe that strengthens and then weakens within
milliseconds. A simple line-vortex model can predict the experimental results if the
vortex is at least two vortex-core radii away from the airframe. After this, the model
predicts continually deepening rather than lessening suction as the vortex stretches.
Experimental results suggest that axial flow within the core of a tip vortex has an
impact on the airframe pressure distribution upon close approach. The mechanism
for this is hypothesized to be the inviscid redistribution of the vorticity field within
the vortex as the axial velocity stagnates. Two models of a tip vortex with axial flow
are considered. First, a classical axisymmetric line vortex with a cutoff parameter is
superimposed with vortex ringlets suitably placed to represent the helically wound
vortex shed by the rotor tip. Thus, inclusion of axial flow is found to advect vortex
core thinning away from the point of closest interaction as the vortex stretches
around the cylindrical surface during the collision process. With less local thinning,
vorticity in the cutoff parameter model significantly overlaps the solid cylinder in
an unphysical manner, highlighting the fact that the vortex core must deform from
its original cylindrical shape. A second model is then developed in which axial and
azimuthal vorticity are confined within a rectangular-section vortex. Area and aspect
ratio of this vortex can be varied independently to simulate deformation of the vortex
core. Both axial velocity and core deformation are shown to be important to calculate
the local induced pressure loads properly. The computational results are compared
with experiments conducted at the Georgia Institute of Technology.

1. Introduction
The flow field about a helicopter in flight is complex in structure. There is a

downwash velocity field, strong tip vortex and inboard vortex sheet generated by
the rotor superimposed on the mean flow around the airframe of the rotorcraft. In
particular, the strong tip vortex can cause significant pressure loading and noise as it
interacts with the airframe. This problem is exacerbated as design requirements place
the rotor and airframe in closer proximity. Precise details of the collision of the tip
vortex with the airframe, as depicted on figure 1, have not been resolved because of
a lack of understanding of the local physics of the problem. Also, the wide range
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Figure 1. The wake of a single-bladed rotor in low-speed forward flight.

of spatial and temporal scales involved can make detailed CFD modelling of the
collision intractable. Thus, in the large-scale rotor codes used to predict rotorcraft
behaviour, heuristic methods have been used to describe the vortex path when the
vortex comes to within one core radius of the airframe. As an example, rotor codes
often prevent the vortex centreline from coming within a fixed distance of the airframe
(Lorber & Egolf 1990). Such arbitrary methods of describing the intense interaction
between a vortex and a surface limit our ability to accurately predict the airframe
pressure distribution and hence the vortex loading. In this paper we consider the
direct collision of a rotor-tip vortex with a cylindrical airframe.

At this point, we should define what we refer to as a vortex-boundary ‘collision’.
Consider the case where the scale of the vortex is much smaller than the body
scale. A ‘collision’ is then defined as the physical process in which a portion of the
vortex, a region of concentrated vorticity surrounded by irrotational fluid, merges
with and ultimately cannot be distinguished from the boundary-layer fluid. For a
strong vortex, this transition is initially dominated by inviscid phenomena such as
vorticity redistribution caused by interaction of the axial-flow vortex with the solid
surface (Lee, Burggraf & Conlisk 1998) and vortex cross-sectional distortion.

Considerable numerical and experimental work devoted to prediction of the rotor-
tip vortex trajectory in the vicinity of an airframe and induced pressure on the
airframe has been presented in the literature. Tip-vortex trajectories in the vicinity
of an airframe (Scully 1975; Egolf & Landgrebe 1983) have been shown to be well-
modelled by potential flow methods using a vortex velocity field described by the
modified Biot-Savart law. The modification adds a cutoff parameter µ (Batchelor
1967; Widnall, Bliss & Zalay 1971; Moore & Saffman 1972) that has the effect of
distributing the vorticity and thus preventing infinite propagation speed of a curved
vortex (Hon & Walker 1991). Recent results that apply a segmented, fixed-core-
radius rotor-tip-vortex model to evaluate the vortex trajectory in the potential flow
surrounding a cylindrical airframe (Affes & Conlisk 1993; Affes et al. 1993; Xiao,
Affes & Conlisk 1994) indicate that when the vortex is more than two core radii away
from the airframe, the µ-distributed model for the vortex core allows prediction of
experimental vortex trajectories (Liou, Komerath & McMahon 1990) and the pressure
measured on top of the airframe (Brand 1989) with reasonable accuracy.

During this early time frame, a suction peak forms on the airframe beneath the
vortex. As the vortex approaches the airframe, this peak gradually strengthens with
a magnitude that depends principally on the vortex circulation. This magnitude is
not yet substantially influenced by the local properties of the vortex, such as local
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Figure 2. (a) Pressure distribution around a model airframe at ψ = 270◦ as measured by Kim &
Komerath (1995), showing the differences exhibited on the advancing and retreating sides of the
airframe. The pressure coefficient ranges from −4.3 in the black areas to 1.2 in the white. The angle
φ measures the azimuth from the top of the cylinder, and φ > 0 denotes the advancing blade side.
XB/R measures the distance along the airframe in the forward flight direction. (b) A sketch of the
tip-vortex structure along the sides of the airframe as described by Kim & Komerath (1995) and
Lee et al. (1998). The vortex core radius is greatly enlarged for clarity.

vortex stretching, core cross-sectional shape or axial velocity in the core. As the
vortex moves closer and finally collides with the airframe, experimental observations
indicate asymmetries along the vortex axis in vortex trajectory, core radius and
surface pressure as well as an eventual weakening of the suction peak at the top
of the airframe (Kim & Komerath 1995; Mahalingam et al. 1995) that cannot be
predicted by an axisymmetric µ-distributed vortex model.

Careful study of the experimental vortex–airframe interaction, visualized by syn-
chronized copper-vapour laser-pulse illumination of smoke-seeded vortices, suggests
that two effects not previously modelled could cause the observed behaviour: axial
velocity in the vortex core and flattening of the vortex core on close approach. We
first consider the effects of axial velocity. The tip vortex shed from a helicopter rotor
blade is typical of all tip vortices shed from loaded wings in forward motion in that
there is present within the core a significant velocity oriented along the generators of
the vortex (McAlister et al. 1995). Experimental results for pressure on the airframe
surface at a rotor phase angle of ψ = 270◦ and an advance ratio 0.1 are shown on
figure 2 (Kim & Komerath 1995). The rotor phase angle ψ is defined as the angle
between the rotor blade and the generators of the airframe. For this advance ratio, the
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Figure 3. Swirl velocity V as a function of radius r on a surface, impulsively inserted through
an axial-flow vortex, at various times after insertion. Here, the dimensionless circulation is Γ = 5.
(a) Advancing blade side with axial flow toward the wall. (b) Retreating blade side with axial flow
away from the wall.

actual collision process begins at approximately ψ = 228◦. Note that on the retreating
blade side (RBS), the newest suction peak near XB/R = 0.5 is still strongly focused,
while on the advancing blade side (ABS), the pressure on the airframe at a point
coinciding with the vortex core is more diffuse. The observed vortex configuration
corresponding to this pressure distribution is sketched in figure 2(b).

Axial flow in the vortex core can cause the observed effects through inviscid vorticity
advection near the airframe surface during a collision. This phenomenon has been
demonstrated by a model in which a surface is impulsively inserted through an initially
infinite vortex with a fully-developed axial velocity profile to create two semi-infinite
vortices (Lee et al. 1998). In that study, the axisymmetric unsteady Euler equations
were solved to determine the velocity field within these semi-infinite vortices on the
inserted surface after the vortex is severed. When the axial velocity in the core of
the vortex is directed toward the surface, depicted in figure 3(a), vorticity is advected
outward and the swirl on the wall decreases as time advances. Note that the location
of maximum swirl velocity that defines the vortex core radius has moved outward,
indicating a bulge in the vortex; moreover, the solution appears to be approaching a
steady state. Similar results have been produced for the case where the axial velocity
is away from the wall, as depicted in figure 3(b). Here, we note the inward advection
and focusing of the swirl that leads to a steepening suction peak. These features are
similar to what is depicted in the experimental results of figure 2.

Recently, the model of Xiao et al. (1994), which describes the interaction of a
modified line vortex with an airframe represented by a distribution of source-panels,
has been modified to incorporate the effects of axial flow through the addition of
vortex rings centred about the axis of the line vortex. Evaluation of the vortex
trajectory and core radius for fundamental mean flow conditions (Radcliff, Burggraf
& Conlisk 1997) demonstrate that the bulging and thinning seen in experiments are
predicted. An attempt to predict the pressure measured during experiments using
this axial-flow model (Mahalingam et al. 1997) captures much of the asymmetry that
could not be predicted previously, but the reduction in pressure loading observed
as the collision process proceeds was not predicted. This phenomenon, which begins
when the vortex axis is within one core radius of the top of the airframe, is strongly
correlated with observed deformation (flattening) of the vortex core.
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Figure 4. Panel airframe and helical vortex system representations with the global coordinate
system used in the calculations.

In this paper, we present a vortex model which incorporates azimuthal and axial
velocity from a superposition of modified line and ring vortex components initially
developed by Radcliff et al. (1997). This model is then modified to allow vortex-core
deformation through distribution of axial and azimuthal vorticity within a vortex
core of rectangular cross-section whose aspect ratio can be varied (Radcliff et al.
1999). These two vortex models, combined with representations of the airframe and
mean flow, are used to evaluate airframe surface-pressure loading. The results are
then compared with experiments.

2. Interaction modelling with an axisymmetric axial-flow vortex
To predict the airframe surface pressures measured in experiments, a model of the

global vortex–airframe velocity field and vortex movement in close proximity to the
surface is required. The model we have produced employs five components; an ana-
lytical representation of the vortex velocity field, a source-panel model to enforce the
zero-normal-velocity boundary condition at the airframe surface, a representation of
the mean flow surrounding the airframe including the rotor downwash, a Lagrangian
scheme to propagate the vortex in space and a calculation of the surface pressure from
the surface velocity field. Figure 4 depicts the modelled vortex–airframe system. Note
that the z-axis in these global coordinates corresponds to the XB-axis in the experimen-
tal references and in figure 2. The individual model components are discussed below.

2.1. Vortex velocity field – axial vorticity

A rotor-tip vortex develops when vorticity shed by a rotor wraps up locally, resulting in
a trailing region of highly concentrated vorticity as the rotor moves forward (McAlister
et al. 1995). The resulting vortex may be approximately represented by a continuous
distribution of helical vortices along a cylinder whose radius represents the vortex
core. Note that in this representation the helical vortices have axial and azimuthal
vorticity components relative to the overall tip-vortex axis and will induce swirl and
axial velocity fields, respectively. A similar velocity distribution may be produced by
the superposition of axially oriented line vortices distributed about the tip-vortex
core radius and azimuthally oriented ring vortices, with a radius equal to the tip-
vortex core radius, distributed along the vortex axis. The line vortices will induce the
aforementioned azimuthal velocity component, while the rings will induce radial and
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Figure 5. Configuration of the axisymmetric vortex and parameters for calculation of the vortex
velocity components.

axial velocity. The advance angle of the helical vortex can then be represented by the
apportionment of axial and azimuthal circulation given a fixed total vortex circulation.
In this section, the velocity distributions caused by a semi-infinite tip vortex with line
and ring components will be derived. A finite segment of such a vortex may then be
created by superposition of two semi-infinite vortices of opposite sign.

A local cylindrical coordinate system is first defined in which x is the distance
measured along the axis of the vortex cylinder, r is the radial distance from the vortex
centreline, and θ is the azimuthal angle. The origin is located in the end plane of
the semi-infinite cylinder, as shown in figure 5. We let a represent the radius of the
cylindrical vortex sheet and Γ the total circulation of the flow around the vortex
cylinder. Let γx be the circulation of the axial vortices per unit width of an axial strip
along the cylinder surface and γθ the circulation of the ring vortices per unit length
along the cylinder surface. Then γx = Γ/2πa, and γθ depends on the advance angle β
of the original helical vortices.

We first consider the axial vorticity represented by the distribution of line vortices.
For temporary convenience, we define a Cartesian coordinate system with y and z
axes in the end plane of the vortex cylinder and place an elementary line vortex strip
parallel to the x-axis on the core radius a, also shown in figure 5. The circulation of
such a strip is dΓx = γxa dθ′, where dθ′ is the angular width of the strip. The velocity
induced by the vortex strip at a point P (x, y, z) is perpendicular to the meridian plane
formed by the vortex line itself and any ray from the vortex to the point P . Consider
the Biot-Savart law (Batchelor 1967)

dv =
1

4π

dΓ× r′
r′3

, (2.1)

where v is the induced velocity, dΓ is the circulation of the differential vortex strip
and r′ is a vector from the vortex element to the object point with length r′. The
magnitude of the induced velocity at P is found by integrating from x′ = 0 to ∞,
giving a well-known formula

vθ′ =
Γx

4πh

(
1 +

x√
x2 + h2

)
, (2.2)

where h is the perpendicular distance from the vortex strip to the point P . Denoting
the angle measured around the cylinder from the y-axis to the vortex strip by θ′, as
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depicted in figure 5, we find

h =
√

(y − a cos θ′)2 + (z − a sin θ′)2

=
√
r2 + a2 − 2ar cos (θ′ − θ), (2.3)

where r denotes the perpendicular radius from the x-axis to the point P and θ is the
angle from the y-axis to P .

The velocity induced by the elementary vortex strip may now be resolved into
Cartesian components, as

v′y = −v′θ(z − a sin θ′)/h, (2.4)

v′z = v′θ(y − a cos θ′)/h. (2.5)

Summing the induced velocity of each such strip around the vortex cylinder yields
integral formulae for the total induced velocity

vy = −γxa
4π

∫ 2π

0

(
1 +

x√
x2 + h2

)
z − a sin θ′

h2
dθ′, (2.6)

vz =
γxa

4π

∫ 2π

0

(
1 +

x√
x2 + h2

)
y − a cos θ′

h2
dθ′. (2.7)

The radial and azimuthal components in the cylindrical system of the tip vortex are
then given by

vr = vy cos θ + vz sin θ, (2.8)

vθ = −vy sin θ + vz cos θ. (2.9)

The integrand of vr is an odd function of θ′ and so the integral vanishes, leaving
no net radial velocity. The last factor of the integrands in vy and vz , when combined
into vθ , may be simplified as follows:

1

h2
[(z − a sin θ′) sin θ + (y − a cos θ′) cos θ]

=
1

h2
[z sin θ + y cos θ − a(sin θ sin θ′ + cos θ cos θ′)]

=
r − a cos (θ′ − θ)

r2 + a2 − 2ar cos (θ′ − θ)
. (2.10)

Hence, the integral for the azimuthal velocity component becomes

vθ =
γxa

4π

∫ 2π

0

[
1 +

x√
x2 + r2 + a2 − 2ar cos (θ′ − θ)

] [
r − a cos (θ′ − θ)

r2 + a2 − 2ar cos (θ′ − θ)

]
dθ′.

(2.11)

Non-dimensionalizing by introducing η = r/a and ξ = x/a, we define the integrals

I1(η) =

∫ π

0

η − cosφ

1 + η2 − 2η cosφ
dφ (2.12)

and

I2(ξ, η) =

∫ π

0

η − cosφ

(1 + η2 − 2η cosφ)

[
1√

1 + ξ2 + η2 − 2η cosφ

]
dφ, (2.13)
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so the azimuthal velocity can be expressed as

vθ =
γx

2π
[I1(η) + ξI2(ξ, η)]. (2.14)

The integrals I1 and I2 can be represented as complete elliptic integrals. Recalling
that γx = Γ/2πa, we obtain the final result

vθ =
Γ

4πr

{
1
2
[1 + sgn (r − a)] +

1

π

x√
x2 + (r + a)2

[
K(k) +

r − a
r + a

Π(σ2, k)

]}
, (2.15)

whereK(k) is the complete elliptic integral of the first kind andΠ(σ2, k) is the complete
elliptic integral of the third kind. (We use the definition of Byrd & Friedman for the
elliptic integrals where σ2 corresponds to the modulus n of Abramowitz & Stegun
(1964).) The moduli are defined as

k2 =
4ar

x2 + (r + a)2
(2.16)

and

σ2 =
4ar

(r + a)2
. (2.17)

2.2. Vortex velocity field–azimuthal vorticity

The azimuthal vorticity component is represented by vortex rings distributed uni-
formly along the vortex cylinder. We proceed in the same manner as before, the
only difference being the direction of the vortex elements. Consider a differential
element of the surface vorticity in the form of a rectangle with length dx′ and width
ds = a dθ′, located about (x′, a, θ′) in the cylindrical coordinate system of the tip
vortex. The velocity vector at an object point P (x, r, θ) for an element with circulation
dΓ = γθ dx′ ds has the vector form

dv′ =
γθ

4πr′3
dx′ ds× r′, (2.18)

where r′ is evaluated as

r′ = [(x− x′)2 + r2 + a2 − 2ar cos (θ − θ′)]1/2. (2.19)

The non-zero components of dv′ are found to be

dv′r =
γθ ds

4πr′3
(x− x′)[cos (θ − θ′)] dx′, (2.20)

dv′x =
γθ ds

4πr′3
[a− r cos (θ − θ′)] dx′. (2.21)

The induced velocity of a semi-infinite strip of such lateral vortices is generated by
integrating with respect to the surface vortex element coordinate x′ from 0 to ∞:

dvr =
γθ ds

4π

∫ ∞
0

(x− x′)[cos (θ − θ′)]
r′3

dx′, (2.22)

dvx =
γθ ds

4π

∫ ∞
0

a− r cos (θ − θ′)
r′3

dx′. (2.23)

Note that dvr is parallel to the ray from the axis of the vortex cylinder through the
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strip. The result of the integration is

dvr = −γθ ds

4π

cos (θ − θ′)√
x2 + r2 + a2 − 2ar cos (θ − θ′) , (2.24)

dvx =
γθ ds

4π

a− r cos (θ − θ′)
r2 + a2 − 2ar cos (θ − θ′)

[
1 +

x√
x2 + r2 + a2 − 2ar cos (θ − θ′)

]
. (2.25)

Now we set ds = a dθ′ and integrate around the cylinder. Note that the azimuthal
velocity component cancels out, since pairs of vortex strips at θ′ = θ + ∆θ and
θ′ = θ − ∆θ produce the same radial velocity in the direction of their own radii.
Hence, the non-vanishing velocity components for the complete semi-infinite vortex
cylinder are

vr =
γθ a

4π

∫ θ+π

θ−π
cos (θ − θ′)√

x2 + r2 + a2 − 2ar cos (θ − θ′) dθ′, (2.26)

and

vx =
γθ a

4π

∫ θ+π

θ−π
a− r cos (θ − θ′)

r2 + a2 − 2ar cos (θ − θ′)
[

1 +
x√

x2 + r2 + a2 − 2ar cos (θ − θ′)

]
dθ′.

(2.27)

Non-dimensionalizing as before, these velocities can also be expressed in terms of
elliptic integrals. To evaluate vr , we define the integral

I0(ξ, η) =

∫ π

0

cosφ√
1 + ξ2 + η2 − 2η cosφ

dφ, (2.28)

and with I1 and I2 defined as before these velocities become

vr = − γθ
2π
η I0(ξ, η), (2.29)

and

vx =
γθ

2π
η[I1(η) + ξ I2(ξ, η)]. (2.30)

Evaluating the radial velocity component gives

vr = −γθ a
2πr

√
x2 + (a+ r)2

[
x2 + a2 + r2

x2 + (a+ r)2
K(k)− E(k)

]
, (2.31)

where E(k) is the complete elliptic integral of the second kind, while the axial
component becomes

vx =
γθ

4

{
[1 + sgn (a− r)] +

2

π

x√
x2 + (a+ r)2

[
K(k)− r − a

r + a
Π(σ2, k)

]}
. (2.32)

Finally, the value of γθ for the vortex rings can be deduced from the helical-vortex
distribution as follows. Consider a small triangular element of the surface of the
vortex cylinder, for which the hypotenuse lies along the helically wrapped vortex line
and the base is parallel to the cylinder axis, as shown on figure 6. Denote by β the
angle between the base and the hypotenuse; i.e. the advance ratio of the helix is tanβ.
All of the vortex lines that pass through the base also pass through the height, and
vice versa. Let the length of the base of the triangle be denoted by b and that of the
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Figure 6. Relationship between the azimuthal and axial components of circulation on the
axial-flow vortex.

height by s. Then, if there are n vortex lines crossing the base, each of circulation
Γ1, the vortex density along the base is nΓ1/b, and its perpendicular (azimuthal)
component is γθ = (nΓ1/b) sin β. Similarly, for the height, the axial component is
γx = (nΓ1/s) cos β. The ratio is thus

γθ

γx
=
s

b
tan β = tan2β. (2.33)

However, we have already noted that γx = Γ/2πa, where Γ is the total circulation of
the vortex cylinder, so

γθ =
Γ

2πa
tan2β. (2.34)

Although the formulation just described is perhaps the simplest representation of
a fully three-dimensional rotor-tip vortex velocity field, concentrating all axial and
azimuthal vorticity into a vortex sheet at r = a can result in numerical instability
when vortex segments are strung together and allowed to propagate freely. A helico-
cylindrical vortex sheet of finite thickness also better approximates the physical
situation. This refinement can be accomplished by smoothing the vorticity over the
core radius using the cutoff parameter µ.

A µ-vortex is defined by the modified Biot-Savart law, in which r′ from the standard

Biot-Savart law, equation (2.1), is replaced by r̄′ =
√
r′2 + µ2. The finite propagation

speed of a vortex ring with a Rankine core of radius ac is matched (Moore & Saffman
1972) by setting

µ = ace
−3/4. (2.35)

In the present case, we have modelled a finite tip-vortex core by defining line and ring
vortices distributed along a specified core radius. Applying a cutoff parameter to both
components of this vortex formulation will approximate a continuous distribution
of line and ring vortex filaments, thus smoothing the concentrated sheet of vorticity
identified previously. Because we want both axial and azimuthal vorticity distributed
to the vortex centre, it is appropriate to assume ac = a for both the line and ring
vortex components. Of course, vorticity will also be distributed outward from the
core radius when this formulation is applied.

The resulting velocity field may be derived following the same steps as before, but



Three-dimensional vortex–surface interactions 311

now beginning with the modified Biot-Savart law. The velocity integrals are evaluated
as before to give

vθ =
Γ

4πr

{
1

2

[
1 +

r2 − a2 − µ2√
(r2 + a2 + µ2)2 − 4a2r2

]

+
1

π

x√
x2 + µ2 + (r + a)2

[
K(k̄) +

r2 − a2 − µ2

(r + a)2 + µ2
Π(σ̄2, k̄)

]}
, (2.36)

vr = − γθ

2πr

√
x2 + µ2 + (a+ r)2

[
x2 + r2 + a2 + µ2

x2 + µ2 + (a+ r)2
K(k̄)− E(k̄)

]
, (2.37)

and

vx =
γθ

4

{[
1 +

a2 − r2 − µ2√
(r2 + a2 + µ2)2 − 4a2r2

]

+
2

π

x√
x2 + µ2 + (r + a)2

[
K(k̄) +

a2 − r2 − µ2

(a+ r)2 + µ2
Π(σ̄2, k̄)

]}
, (2.38)

while the moduli defined for the µ-vortices are

k̄2 =
4ar

x2 + (r + a)2 + µ2
, (2.39)

σ̄2 =
4ar

(r + a)2 + µ2
, (2.40)

and the relationship between the circulation Γ of the vortex cylinder and the vorticity
components γx and γθ remains unchanged.

Note that in the classical case of µ → 0, a symmetry argument predicts that the
axial and azimuthal velocity components as x → ∞ are exactly double their values
for x = 0. This result is confirmed by (2.31) and (2.32), where we make use of the

limiting results k → 0 as x→ ∞, and Π(σ2, 0) = π/2
√

1− σ2. At both x-locations, vx
vanishes for r > a and vθ vanishes for r < a. Also, vr vanishes identically for x→ ∞,
though not for x = 0. These conclusions for vx and vθ do not hold for the µ-vortex,
since the symmetry argument fails in that case, owing to the overlap of vorticity at
the opposing ends of the two halves of the infinite vortex-cylinder.

2.3. Distributed vorticity with zero physical radius – vortex ringlets

The application of the µ-vortex model to our helical tip-vortex system introduces the
possibility of a simplification. Initially, our model consisted of line and ring vortices,
unmodified by the cutoff parameter, distributed over the surface of a semi-infinite
cylinder of radius a. Collapsing this structure to a physical radius a = 0 would give
an axial vorticity component identical to a single line vortex, with infinite azimuthal
velocity on the vortex axis. The azimuthal vorticity component would collapse to
give infinite axial velocity on the vortex system axis given that the ratio of axial to
azimuthal circulation β is maintained. Introduction of the cutoff parameter to both
line and ring vortex models allows the collapse of the helical vortex system into a
meaningful three-dimensional velocity profile; a finite azimuthal velocity profile that
peaks at an effective vortex core radius and a finite axial velocity profile that peaks at
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the vortex centreline. This model, then, provides the detail we want without evaluating
the elliptic integrals, an iterative computation that is difficult to vectorize because of
data dependency.

The azimuthal velocity component for the zero-physical-radius model is given by a
single modified line vortex at the tip-vortex centreline with the aggregate circulation
of the original cylindrical line vortex distribution. This velocity field, obtained from
(2.36) in the limit a→ 0 while holding µ fixed, is

vθ =
Γx r

4π(r2 + µ2)

(
1 +

x√
x2 + r2 + µ2

)
, (2.41)

where Γx is the total axial circulation of the helical vortices.
Several approaches are possible to derive the zero-radius limit case for the axial

and radial velocity components. We can:
(i) Expand the µ-vortex ring elliptic integral formulas (equations (2.37) and (2.38))

in power series;
(ii) Form the expression for a singular vortex ring by expanding the well-known

formula for a finite vortex ring (modified with a cutoff parameter) and then integrating
it along the axis of the tip-vortex cylinder; or

(iii) Expand the integrands of the µ-modified integrals I0, I1 and I2 in powers of η
and discard the higher-order terms prior to evaluating the elliptic integrals.

The third approach is the simplest and is followed here, although each of the three
methods listed above were carried out, with identical results for each method. The
resulting velocity components are

vr = −γθ a
2

4

r

(x2 + r2 + µ2)3/2
, (2.42)

and

vx =
γθ a

2

4

{
2µ2

(r2 + µ2)2
+ x

(2µ2 − r2)(r2 + µ2) + 2µ2x2

(r2 + µ2)2(x2 + r2 + µ2)3/2

}
. (2.43)

We term this the ‘ringlet’ velocity distribution.
Note that these limit forms of the velocity field are useful provided the factors

Γx = γx2πa and γθa
2 are held fixed, equal to their values for the original finite helical

vortices. This interpretation is automatic for the axial vortices, but the ringlets may be
interpreted more easily in terms of the axial volume flux induced by these vortices. It
is convenient to consider the volume flux Q for a fully infinite vortex cylinder, which
we obtain by evaluating the limit as x→∞ to find

vx −→ γθ a
2 µ2

(r2 + µ2)2
. (2.44)

Then

Q =

∫ ∞
0

vx 2πr dr = πγθ a
2. (2.45)

Hence, the former expressions for vr and vx may be rewritten in terms of Q, and the
physical radius a is suppressed altogether as:

vr = − Q

4πµ2

r/µ

(1 + (x2/µ2) + (r2/µ2))3/2
, (2.46)
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vx =
Q

4πµ2

1

(1 + (r2/µ2))2

{
2 +

x

µ

(2− (r2/µ2))(1 + (r2/µ2)) + 2x2/µ2

(1 + (x2/µ2) + (r2/µ2))3/2

}
. (2.47)

The parameter µ is now seen to be the effective radius of the ringlet vortices, in
the sense that the axial velocity scale is obtained by dividing the volume flux Q by an
effective cross-sectional area expressed by πµ2.

2.4. Airframe model

The airframe represents a zero-normal-velocity boundary condition. We model this
with a source-panel method originally due to Hess & Smith (1967) and applied to the
present problem by Xiao et al. (1994). The airframe is represented by a finite-length
circular cylinder which is approximated by M ×N rectangular source panels, where
M is the number of panels along the cylinder axis and N is the number of panels
around the cylinder. The panel size is not uniform and is designed to be smallest
in the region immediately under the vortex. The length of the panels in the axial
direction vary according to

∆LVm = LVmin + Bm2 (m = 1, 2, . . . ,M/2), (2.48)

where

B = 6

[
LVmin − 1

2
M∆LVmin

1
2
M( 1

2
M2 + 1)

]
, (2.49)

LVm is the length of the mth panel, LVmin is the minimum panel width and LVmax is the
half length of the airframe cylinder. The panel distribution in the azimuthal direction
is also not uniform but is heuristically clustered under the vortex.

The panel mesh is translated axially to maintain the narrowest axial panels directly
beneath the head of the approaching vortex, a strategy required by the close approach
of the strong vortex to the airframe. Since the panels remain in the same configuration,
the matrix of influence coefficients, which is inverted to find the panel source strengths,
is independent of time and need not be recalculated at each timestep. The panel
representation of the airframe is illustrated in figure 4.

2.5. Mean flow model

The flow in the rotor downwash region occupied by the tip-vortex is very complex.
Analysis of the vortex trajectory experimentally determined by Liou et al. (1990)
suggests that the mean flow components in the rotor downwash near the airframe
could be reasonably represented by a constant mean flow with a linear shear, such
that

w(x) = Ax+ B, (2.50)

v(x) = Cx+ D. (2.51)

Affes et al. (1993) estimated the constants A,B, C and D from the experimental vortex
trajectory at points as far as possible from the airframe (approximately 50 core radii
or 5 airframe radii av). This linear shear model is applied herein.

2.6. Vortex propagation model

The vortex is modelled by a piecewise-continuous distribution of finite-length vortex
segments terminated by straight, semi-infinite ends parallel to the airframe x-axis. The
velocity field generated by each segment is based on the zero-radius model, although
a physical radius is assigned to each segment. To calculate the vortex trajectory,
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the velocities generated locally in the vortex segment and panel coordinates are first
transformed into the global vortex-airframe system coordinates. The vortex segment
centreline endpoints are then advanced by solving the differential equation:

dxv
dt

= uv, (2.52)

where xv is the set of vortex-segment endpoint-position vectors in the global coordi-
nates, t is the time, and uv is the set of segment endpoint velocity vectors due to all
vortex segments, cylindrical airframe source panels and the mean flow. An Adams–
Moulton method is used to solve this system of equations. As the vortex moves, the
physical core radius for each vortex segment is evaluated. We assume that the core
volume of each segment is conserved as the vortex segment stretches or compresses
as determined by the motion of the segment endpoints. The helical advance ratio and
cutoff parameter of each vortex segment, which are functions of the segment core
radius, are then recalculated at each timestep. The cutoff parameter is defined directly
from the core radius in (2.35). The helical advance is evaluated through the parameter
tan2 β as defined in (2.33) and based on figure 6. The initial value of this parameter
is set by comparison to experiment. We note from the equation and figure that tan2 β
is proportional to (b/s)

2
. The quantity b is directly proportional to core radius (a),

while s is inversely proportional to a2 when the segment volume is conserved. From
this, we find that tan2 β varies with a6 as the vortex segment deforms.

When vortex segments of different core radii are joined together to form a model
of an extended vortex, it is appropriate to include an annular disk with a distribution
of radial vorticity to bridge the segments. The need for this component is readily seen
if we consider an initially straight vortex. Stretching the vortex differentially along
its length will result in a taper. This taper will induce a component of velocity along
the vortex axis that would not exist in a segmented model of the vortex no matter
how finely noded. This component of vorticity is not included in the current model
because the formulation of the connecting vorticity is complicated when the segments
form a curved, rather than straight, vortex. The effect of the neglected vorticity has
been evaluated for the axisymmetric case and found to be small compared to the
overall azimuthal vorticity given the small degree of vortex taper experienced in this
research. This effect is compensated for by adjusting the strength of the azimuthal
vorticity through the tan2 β parameter so as to produce the desired axial velocity at
the centre of the vortex.

One other practical matter must be considered. The endpoints defining the vortex
segments are advected away from the airframe by the axial component of the segment
velocity field. To prevent the gridded vortex region from moving laterally away from
the airframe, the vortex segments are regridded to their original global x-position
after each timestep and the core radius for each segment is then interpolated.

2.7. Pressure calculation

Airframe pressure loading is calculated by integrating the Euler equations over the
cylindrical surface. The non-dimensionalized axial pressure gradient is given by

−∂P
∂z

=
∂ws

∂t
+ (ws − c)∂ws

∂z
+
vs

r

∂ws

∂θ
, (2.53)

where ws and vs are surface speeds in the axial and azimuthal directions, respectively,
and c is the translational speed of the panel mesh. The Euler equation is integrated
along z at a constant θ; in particular, the axial derivative is integrated from z = −L
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Figure 7. The experimental configuration.

to z′ analytically to find∫
(ws − c)∂ws

∂z
= 1

2
(w2

s − ws,−L2 )− c(ws − ws,−L), (2.54)

where

ws,−L = ws(θ,−L) (2.55)

and 2L is the length of the computational domain. The time and azimuthal derivatives
are evaluated by central differencing and then integrated using the trapezoidal rule.
Note that the pressure is referenced to a value of zero away from the airframe.
Predicted pressures at both ends of the finite airframe include the effects of the vortex
velocity field and are thus consistently negative compared to the reference pressure.

2.8. Results of the zero-radius helical µ-vortex model

The numerical model of the zero-radius µ-vortex and airframe were applied to predict
the vortex trajectory, vortex core radius and airframe surface pressure resulting from
advection of an initially straight axial-flow vortex toward a cylindrical airframe.
Initial vortex and airframe parameters were based on the experiments at the Georgia
Institute of Technology, as summarized by Kim & Komerath (1995).

The experimental facility consists of a rotor and a cylindrical representation of
a helicopter airframe placed in a wind tunnel as shown in figure 7. Significant
parameters of the facility as configured for this comparison are

(i) Airframe radius (a∗R) = 0.067 m,
(ii) Free-stream velocity (w∗∞) = 10 m s−1 at 2100 r.p.m. and

(iii) Rotor advance ratio = 0.1,
where ∗ indicates a dimensional parameter.

For the computations presented here, all parameters were non-dimensionalized on
the airframe radius a∗R and the free-stream mean velocity w∗∞. Following the illustration
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in figure 4, the z-axis is oriented along the modelled airframe which has a length of 10.
It is represented by 81 axial and 40 azimuthal panels clustered about the top centre
of the cylinder with a minimum 0.005 length and 1◦ width, respectively. The vortex is
initiated as a straight, infinite vortex located parallel to the x-axis at (y, z) = (1.3, 0.0).
It is represented by 76 finite vortex segments, with a minimum length of 0.005 and
cumulative length of 10, plus two semi-infinite end segments. Recently measured values
of vortex circulation, core radius and axial velocity (Mahalingam et al. 1997) were
incorporated into the initial conditions. These average to a circulation Γ ∗ = 1.0 m s−2

or Γ = 1.493, an initial core radius a∗ = 6.7 mm or a = 0.1, and a vortex axial
velocity u∗ = 32 m s−1 or u = 3.2. We should note that the experimental trajectory
and pressure data were taken at a rotor speed of 2100 r.p.m. while other parameters
such as circulation and axial velocity have since been refined with measurements
at 1050 r.p.m. This is accounted for in the non-dimensionalization by maintaining a
constant rotor advance regardless of rotor speed.

The mean velocity field was estimated by Affes et al. (1993), who determined that
the vortex ends well away from the airframe were advected correctly given

w = 1.315 + 0.045x, (2.56)

v = −0.557− 0.1245x. (2.57)

To evaluate the effect of axial core velocity unambiguously, we wished to advect the
vortex toward the airframe as squarely as feasible, without the tilt caused by the shear
in the experimental velocity field or the vortex deformation caused by the presence
of the airframe. This was accomplished by ignoring shear in the downwash and by
artificially increasing the v-velocity near x = 0 as described by the expression

v = −0.557(1 + A1 exp (−|x|/A2), (2.58)

with A1 = 0.7 and A2 = 1.0. This modification causes the vortex to advect nearly
linearly across the top of the airframe with an approach speed of the magnitude
observed in the experiments.

Once initiated, the vortex is allowed to propagate freely with a typical dimensionless
timestep of 0.001. The sensitivity of the results obtained to the number of panel and
vortex segments, airframe and vortex length and time increment has been tested.
Doubling the number of panels or vortex segments, or increasing the airframe or
vortex length, has little effect on the result. Four-digit accuracy is obtained for vortex
trajectory and two-digit accuracy is obtained for pressure at the times presented
unless otherwise noted. Timesteps are chosen to ensure that vortex movement does
not exceed the narrowest panel width in any interval, so timesteps are typically
shortened as the vortex approaches the airframe. Decreasing the timestep further has
little effect other than to provide finer resolution of the exact time at which a vortex
segment endpoint is predicted to penetrate the airframe.

The effects of axial velocity can be demonstrated by comparing cases with no
axial velocity, a low velocity of 0.5 and a velocity of 3.2 that corresponds to the
experiment. The predicted vortex x-y and x-z trajectories for the case with no axial
velocity given the downwash velocity of (2.58) are depicted in figure 8. The imposed
downwash velocity advects the vortex in a nearly straight line, although the effects of
the airframe are clear. Note that the final vortex position is only a small fraction of
the initial vortex core radius from the airframe surface. In the z-direction the head of
the vortex is driven toward the front of the airframe by the action of the approaching
image vortex, resulting in significant stretching of the centre section of the vortex.
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Figure 8. Vortex trajectory from t = 0.05 to 0.55 in 0.05 increments. (a) the (x, y)-plane, (b) the
(x, z)-plane. The boundary of the airframe is also shown. Note that the x-scales are different to best
show the details of the trajectory.

Vortex core radius for three axial velocity cases are presented in figure 9. With no
axial velocity, in figure 9(a), the core radius is observed to thin symmetrically as the
vortex approaches the airframe. This thinning accelerates as the vortex stretches into
an elongating horseshoe, as seen in figure 8(b). Previous results for µ-vortex models
(Affes et al. 1993, Radcliff et al. 1997) demonstrate similar behaviour.

Invoking a relatively small vortex axial velocity of 0.5 (5 m s−1) causes some asym-
metry in the core radius, as shown in figure 9(b). Compared with the case of zero
axial velocity, the core radius is thinning on the retreating blade side of the airframe
and dilating on the advancing blade side. The thinning is notable from just off the
airframe centreline to several airframe radii away, indicating an outward advective
effect due to the vortex axial velocity. Vortex core dilation shows an inward advective
effect, with dilation becoming localized near x = 0 where the legs of the vortex
nearly parallel the airframe axis. Also, the overall magnitude of the thinning, which
is greatest just above the airframe, is less than for the previous case.

Increasing axial velocity to 3.2 (32 m s−1), the magnitude experienced in experiments,
results in a dramatic extension of the trends observed at low axial velocity. Core radius,
as shown in figure 9(c), presents significantly more asymmetry. Thinning on the RBS,
advected well away from the point of close interaction by the higher axial velocity,
extends much further from the airframe, while the core dilation is advected closer to
the airframe centreline (x = 0). More striking is the magnitude of the thinning and
dilation, which is much smaller than before. The maximum thinning observed, now
slightly to the RBS side of the airframe centre, is only of the order of 10%, where it
was nearer to 50% in previous cases. Stretching of the vortex, indicated by the (x, z)-
trajectory shown in figure 10, is reduced by perhaps 30% when compared with the
zero velocity result in figure 8(b). Although the trajectory still appears substantially
symmetric, all of the vortex stretching now occurs on the RBS side of the airframe,
whereas stretching is symmetric about x = 0 in figure 8(b).

The surface pressure along the top of the airframe (x = 0) is shown in figure 11
for the different axial velocity cases. With no axial velocity, shown in figure 11(a), the
constant-circulation vortex thins, the azimuthal vorticity increases and the pressure
predicted along the top of the airframe cylinder shows a steadily deepening suction
peak directly below the approaching vortex. This is in agreement with previous results
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Figure 9. Vortex core radius from t = 0.05 to 0.55. (a) No vortex core axial velocity; (b) axial
velocity of 0.5 within the vortex core; (c) axial velocity of 3.2 within the vortex core.
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Figure 10. Vortex trajectory from t = 0.05 to 0.55 with a vortex core axial velocity of 3.2.

(Affes et al. 1993). Note that the pressure integrated along the airframe surface does
not return to the intial value, with increasing error as time advances. For this reason,
the pressure results are not presented past t = 0.50. The cause of this error is discussed
in the next section where an upgraded vortex model is introduced.

The surface pressure resulting from an axial velocity of 0.5 is shown in figure 11(b).
On direct comparison with the zero axial velocity case, we can see that the magnitude
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Figure 11. Airframe surface pressure at x = 0 induced by the approaching vortex from t = 0.05
to 0.50. (a) No vortex core axial velocity; (b) axial velocity of 0.5 within the vortex core; (c) axial
velocity of 3.2 within the vortex core.

of the suction peak at z = 0, although still increasing with time, shows some sign of
slowing as axial velocity is increased. The pressure fails to recover at large z in the
same manner as the zero axial velocity case.

These trends continue when axial velocity is increased to 3.2, as shown in figure
11(c). Until t = 0.45, the suction peak is only slightly less than in the previous cases,
but, with high axial velocity, the increase in magnitude of the peak is nearly stopped
by t = 0.5. A closer look at the pressure from t = 0.45 to 0.55 is given in figure 12. We
can see that the suction peak actually reverses after t = 0.5, a behaviour exhibited in
experiments, although the continued lack of pressure recovery at large z casts doubt
on the result.

Summarizing, in the case of no axial velocity we see the image vortex forcing the
vortex head toward the front of the airframe, stretching the vortex symmetrically
about the airframe axis. This stretching reduces the core radius and thus increases
vorticity and swirl velocity locally. The increase in swirl then reinforces the vortex
head motion, a feedback effect that results in continued stretching and thinning. The
final result is an ever-growing suction peak on the top of the airframe, a prediction
not supported by experiment.

As axial velocity is increased, advection causes strong asymmetry about the airframe
along the x-axis. The image vortex still acts to force vortex head motion, but stretching
of the vortex is inhibited by the effects of axial velocity. As the vortex stretches, the
alignment of the vorticity changes to increase the axial vorticity component at the



320 T. D. Radcliff, O. R. Burggraf and A. T. Conlisk

–0.2 0 0.20.1

t=0.55

A
ir

fr
am

e 
su

rf
ac

e 
pr

es
su

re

–20

–15

–10

–5

0

5

–0.1

t=0.45

z

Figure 12. Airframe surface pressure at x = 0 from t = 0.45 to 0.55 in increments of 0.02. Axial
velocity within the vortex core is 3.2.

expense of the azimuthal component, as is clear from the illustration of the helical
vortex in figure 6. This means that vortex segment stretching initiated by the image
vortex causes a reduction in the vortex core axial velocity, which then limits the
stretching of the segment. The opposite is true in the case of vortex dilation. It would
be expected that this action would inhibit the z-direction movement of the vortex,
and, in fact, some reduction in motion is seen when comparing figures 8(b) and 10.
However, the core radius depicted in figure 9(c) demonstrates that vortex stretching,
rather than occurring in a symmetric manner directly over the airframe, now occurs
completely on the retreating blade side of the airframe and over a much longer
distance as the slightly thinned vortex is advected away from the region of closest
interaction. Although the vortex trajectory is relatively unaffected, the thinning of the
vortex is reduced in magnitude while increased in coverage. The feedback effect is thus
avoided and airframe surface pressure is seen to reach a minimum and consequently
reverse as observed in experiments. However, the failure of the predicted pressure to
recover to its initial value casts doubt on this observation.

3. Deformable core axial-flow vortex
Considering the position of the edge of the vortex core relative to the airframe

suggests a hypothesis for the observed anomaly in pressure. In the present model, each
helical vortex segment is represented by a single line of µ-distributed axial vorticity
surrounded by distributed azimuthal vorticity. The position of the vortex segment is
determined by its centreline endpoints. Surface pressure in the model is calculated
by starting with a known pressure, well away from the vortex, and then integrating
the Euler equation along a line on the airframe surface that passes under or through
the vortex. As the vortex approaches the surface, the pressure at the end of the line
of integration beyond the vortex is not observed to return to the initial value as
expected, but rather is increasingly underpredicted.

The first time at which pressure fails to recover fully is t = 0.3 in figure 11(a).
Referring to the trajectory and radius figures, we note that the distance between the
vortex and the airframe at x = 0 becomes less than the vortex core radius after
t = 0.25. Although the panel model of the airframe enforces a zero-normal-velocity
boundary condition at the airframe surface, nothing prevents the distributed axial
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vorticity from unphysically overlapping the space occupied by the solid airframe as
the vortex centreline advects to within a core radius. This is believed to be the cause
of the observed pressure anomaly. Further support of this hypothesis is gained by
studying the cases with increased axial velocity. When axial velocity is 0.5, the core
radius directly above the airframe changes little from the zero axial velocity case, as
does the magnitude of the pressure anomaly. When the velocity is increased to 3.2,
the core radius decreases much less and the observed magnitude of the anomaly after
t = 0.3 increases as more vorticity overlaps the airframe.

To circumvent this problem, a model in which vorticity is maintained within a
bounded region that cannot cross solid boundaries was formulated. Observations
of experimental vortex–surface collisions show the vortex core flattening into an
ellipse before the vortex merges into the boundary layer. However, the mathematics
of bounded vorticity within an ellipse are quite complicated, so we have applied a
rectangular, or ‘box’ vortex formulation. In this box-vortex model, axial and azimuthal
components of vorticity are distributed uniformly over the interior of a rectangular
core volume. This distribution of vorticity prevents the singularity in velocity at the
core boundary that the cutoff parameter µ was originally introduced to avoid, so µ is
not used in the box-vortex model and thus all vorticity is enclosed within the vortex
boundary. Variation of the aspect ratio of this box-vortex core maintains the vorticity
outside of the airframe on close approach while still preserving the calculated vortex
cross-sectional area. The derivation, which was presented previously by Radcliff et al.
(1999), is repeated here for completeness.

3.1. The box-vortex velocity field

The three-dimensional velocity field that results from a finite-length rectangular vortex
segment with distributed vorticity is found by defining a uniform distribution of line
vortices oriented along each of the box-vortex coordinate axes and then integrating
each orthogonal velocity component induced over the volume of the rectangular box-
vortex segment. The velocity field for each line vortex in the distribution is again given
by the Biot-Savart law, equation (2.1). The integration for each velocity component in
each coordinate is similar if the appropriate order of integration is chosen, so only the
integration of a typical component of the axial vorticity distribution is presented here.

We start with a differential vortex element located at the point (ξ, η, ζ) within a
finite box vortex segment, as shown in figure 13. Cartesian coordinates originate at
the end of the segment with the ζ-axis parallel to the axis of the box-vortex, thus
transposing the local ξ and ζ axes compared with the local x and z axes of the
cylindrical vortex formulation of figure 5. To evaluate the velocity induced at a field
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point (x, y, z) by axial vorticity ω uniformly distributed over a rectangular volume, we
represent the circulation vector by dΓ = kω dξ dη dζ. Thus, the non-zero components
of velocity are

du′′ = −ω dξ dη dζ

4π

y − η
r3

, (3.1)

and

dv′′ =
ω dξ dη dζ

4π

x− ξ
r3

, (3.2)

where r=
√
R2 + (z − ζ)2, and R is the perpendicular radius R=

√
(x− ξ)2 + (y − η)2.

Integrating the differential vortex element into a vortex line segment of finite length
ζ = 0 to L, we find the u-component of velocity by integration with respect to ζ as

du′ = −ω dξ dη

4π
(y − η)

∫ L

0

dζ

[R2 + (z − ζ)2]3/2
. (3.3)

Thus, for the vortex segment

du′ =
ω dξ dη(y − η)

4πR2

[
z − L√

R2 + (z − L)2
− z√

R2 + z2

]
. (3.4)

Next, a vortex sheet is formed by integrating the segments with respect to η over
the range −b < η < b to find

du =
ω dξ

4π

[
(z − L)

∫ b

−b
(y − η) dη

R2
√
R2 + (z − L)2

− z
∫ b

−b
(y − η) dη

R2
√
R2 + z2

]
. (3.5)

It is convenient to introduce t = R2 = (x − ξ)2 + (y − η)2, such that the integrals in
the above formula simplify to

du =
ω dξ

8π

[
z

∫ η=b

η=−b
dt

t
√
t+ z2

− (z − L)

∫ η=b

η=−b
dt

t
√
t+ (z − L)2

]
. (3.6)

With the result

du =
ω dξ

4π

[
ln

(√
(ξ − x)2 + (b− y)2 + z2 − z√
(ξ − x)2 + (b+ y)2 + z2 − z

)

− ln

(√
(ξ − x)2 + (b− y)2 + (z − L)2 − (z − L)√
(ξ − x)2 + (b+ y)2 + (z − L)2 − (z − L)

)]
. (3.7)

Now we form a rectangular volume of uniform vorticity by integrating the vortex
sheet with respect to ξ over the range −a < ξ < a. Hence, from (3.7), we need to
evaluate integrals of the form

I(s) =

∫
ln
(√

s2 + α2 + β2 − β
)

ds. (3.8)

Evaluating the indefinite integral yields

I(s) = s ln
(√

s2 + α2 + β2 − β
)
− s− β sgn (s) ln

(
|s|+√s2 + α2 + β2

)
+α arctan

(
αs/[α2 + β2 − β√s2 + α2 + β2]

)
. (3.9)



Three-dimensional vortex–surface interactions 323

Finally, reverting back to the original x, y, z variables, the elemental integrals of the
log-factors in (3.7) may be written as∫ a

−a
ln
(√

(ξ − x)2 + (b+ y)2 + (z − L)2 − (z − L)
)

dξ

=F(a− x, b+ y, z − L)−F(−a− x, b+ y, z − L), (3.10)

where the F-function is defined as

F(x, y, z) = x ln
(√

x2 + y2 + z2 − z
)

−y arctan

(
xy

y2 + z2 − z√x2 + y2 + z2

)

+z sgn (x)
[
ln
(
|x|+√x2 + y2 + z2

)
− ln

√
y2 + z2

]
. (3.11)

Adapting (3.10) to match the various log-factors in (3.7), the ξ-component of
velocity induced by axial vorticity uniformly distributed throughout a rectangular
volume is given by

u =
ω

4π
[F(a− x, b− y, z)−F(−a− x, b− y, z)

+F(a− x, b+ y, z − L)−F(−a− x, b+ y, z − L)

−F(a− x, b− y, z − L) +F(−a− x, b− y, z − L)

−F(a− x, b+ y, z) +F(−a− x, b+ y, z)]. (3.12)

The velocity components from vorticity distributed parallel to the ξ- and η-axes
of the box-vortex are solved in the same manner. For vorticity component ωη , we
will find the u- and w-components of velocity by integrating in the order η, ζ, ξ and
η, ξ, ζ, respectively, while the v- and w-components from vorticity component ωξ
can be found by integrating over ξ, ζ, η and ξ, η, ζ, respectively. Note that, in each
case, the sign of the vorticity will change at the centre of the box vortex so these
velocity expressions will have twice the number of F-function evaluations as that
shown in (3.12).

The uniform distribution of the vorticity components ωη and ωξ in each quadrant
of the (η, ξ)-plane corresponds to a resultant vorticity distribution in the form of
diamond-shaped vortex loops over the interior of the box. For completeness, the
vortex loops that intersect the edges of the box must be closed by vortex segments
lying along these edges. Our experience has shown that concentration of vorticity on
the edges of the vortex segment cross-section can lead to instability in the advection
of neighbouring vortex segments that make up the tip-vortex model. For this reason,
the present model does not include the connecting vortex segments along the edge
of the box. In addition, the vorticity distribution that connects the vortex segments
has been neglected, as discussed in § 2.6. Both effects have been compensated for
by adjusting the strength of the interior vorticity so as to produce the desired axial
velocity at the centre of the vortex.
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3.2. Incorporating the box vortex into the interaction model

To incorporate the box-vortex velocity field expressions with the rest of the numerical
vortex–surface interaction model previously described in §§ 2.4 to 2.7, two additions
are required. First, variation of the aspect ratio of the vortex must be modelled.
The vortex propagation model of § 2.6 evaluates the radius and therefore area of
the cylindrical vortex core through conservation of vortex segment volume. For the
box vortex, this area is evaluated as an effective core radius such that πa2

eff = 4ab.
The box-vortex core is initially represented by a square cross-section with an aspect
ratio (b/a) of unity. As the vortex stretches and the cross-sectional area decreases, a
and b decrease equally until the vortex segment centreline and airframe surface are
separated by less than the effective core radius. Then, b is set equal to the separation
distance to prevent vorticity from overlapping the airframe, while a is increased to
maintain the original vortex segment cross-sectional area. Deformation of the vortex
(η, ξ)-cross-section will cause a change in the areas of the (η, ζ)- and (ξ, ζ)-planes of
the deformed segment, so the azimuthal vorticity components must be modified to
correct for this. This is accomplished by multiplying ωη by a0/a and ωξ by b0/b, where
a0 and b0 are the initial box vortex core dimensions corrected for vortex stretching,
while a and b are the core dimensions predicted at the current time by the vortex
deformation model.

Next, the direction of the local vortex-segment coordinates relative to the global
coordinates must be specified carefully. When calculating the global model velocity
field, the contribution of each vortex segment must be transformed from segment
local coordinates of figure 13 to the global airframe coordinates of figure 4. When
the axisymmetric helical vortex model was used, the transformation from the vortex
segment coordinates to the global coordinates required two rotations, the rotation
of the segment about the vortex axis being immaterial. With the box-vortex model,
a third rotation must be defined to keep the segment (ξ, ζ)-plane tangential to the
closest airframe point, ensuring that the vortex segment flattens against, rather than
into, the airframe surface. This was accomplished through the initial definition of the
vortex segment basis vectors. The segment axis basis êζ is defined in both models by
the endpoints of the vortex segment centreline that are tracked by the Lagrangian
advection model. Basis vector êη can then be defined normal to the cylindrical airframe
surface by setting the component of êη in the axial (z) direction of the airframe equal

to zero (i.e. êη = aηζ î+ aηηĵ) and letting êζ · êη = 0. Finally, basis êξ is given by êζ × êη .
This combination of vortex flattening and coordinate basis ensures vorticity will not
overlap the airframe until the vortex centreline violates the surface.

3.3. Results of the revised model

In this section we present effective core radius and airframe surface pressure for the
zero and non-zero axial velocity cases studied previously with the helical vortex model.
With the obvious exception of an initially square cross-section vortex, the vortex and
airframe parameters are maintained and the figures are directly comparable to those
presented previously.

The effective core radius, core aspect ratio and surface pressure for the case with no
axial velocity are presented in figure 14. Here, the total vortex segment cross-sectional
area is represented by the effective core radius defined above and the aspect ratio is
defined as vortex core height (normal to the airframe) divided by the core width. The
effective core radius is very similar to that predicted with the helical vortex model,
figure 9(a), until after t = 0.45. After this time, the core radius in the box-vortex
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Figure 14. (a) Vortex core effective radius (πa2
eff = 4ab), and (b) core aspect ratio b/a from t = 0.05

to 0.55; and (c) airframe surface pressure from t = 0.05 to 0.5, in increments of 0.05. All predictions
apply the box-vortex formulation. Note that the aspect ratio is unity until after t = 0.35. Axial
velocity within the vortex core is zero.

model decreases at a much slower rate than in the previous prediction. Deformation
of the vortex core is the probable reason as a significant portion of the vortex flattens
by more than half after t = 0.45, with a deformation as large as 25 : 1 at t = 0.55.
The z-direction trajectory of the vortex head (not shown) is also noted to slow after
t = 0.45, presumably for the same reason, otherwise the trajectory is similar to that
predicted by the helical vortex model.

The effects of core deformation are clear in the surface pressure prediction. Unlike
the prediction of the helical vortex model in figure 11(a), where suction strengthens
until the end time of t = 0.5, surface suction predicted with the box-vortex model
increases only until t = 0.4 and then begins to decrease. Because of this, the peak
suction is of the order of 12, a smaller value than was observed in any of the cases
evaluated using the helical vortex model. Also notable is that pressure now recovers
to the original value away from the vortex. Although a small discrepancy is still seen
at t = 0.4, when the suction peak begins to recover, the improvement from using
the box-vortex formulation is clear. Pressure recovery errors do occur after t = 0.5,
but the magnitude of the errors is irregular in value and sign as compared with the
monotonic increase seen in figure 11. This is thought to indicate the limit of accuracy
in the source-panel velocity calculation.

Applying an axial velocity of 3.2 using the box-vortex model confirms the results
of the helical µ-vortex model. Core radius, shown in figure 15(a), behaves similarly to
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Figure 15. (a) Vortex core effective radius, and (b) core aspect ratio from t = 0.05 to 0.55; and
(c) airframe surface pressure from t = 0.05 to 0.5. Axial velocity in the vortex core is 3.2.

the comparable result in figure 9(c). The only notable difference is that significantly
more dilation is observed close to the airframe after t = 0.45. The associated core
aspect ratio in figure 15(b) shows little change from the zero axial velocity case, with
a slightly broader region of deformed vortex segments. Finally, the airframe surface
pressure shown in figure 15(c) is similar to that predicted by the box-vortex model
with no axial velocity in figure 14(c). A notable exception is an increased positive
pressure upstream (z = −0.15) of the vortex position at t = 0.49, the last timestep
without significant pressure recovery error. Like the prediction of the helical vortex
model, the magnitude of the suction peak is observed to decrease slightly, in this case
from −13 to −10, as axial velocity is increased.

Overall, we can see that axial velocity acts to distribute vortex stretching over a
considerable distance along the vortex axis, away from the primary interaction point
at x = 0, causing reversal of the suction peak as seen in experiments. Deformation
of the core, a necessary condition for a successful prediction of the airframe surface
pressure, also distributes vorticity away from the primary interaction point at z = 0, in
this case along the airframe axis through vortex flattening, and thus also contributes
to the behaviour observed in experiments.

4. Comparison of the box-vortex model with experimental data
The intent of the comparisons presented in the last two sections was to illustrate the

effects of axial velocity and vortex core flattening with a vortex, having characteristics
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Figure 16. Vortex trajectory from ψ = 190◦ to 260◦. —, computed trajectories at ψ = 210◦ and
240◦, ©, experimental data at the same times. The initial vortex parameters were specified from
experimental observations at ψ = 180◦. Arrows denote increasing ψ.

similar to those measured in experiments. To improve the clarity of the results, the
vortex was maintained unrealistically straight while it was advected into the airframe.
To predict the experimental results of Kim & Komerath (1995) and Mahalingham
et al. (1997) using the box-vortex model, it is only necessary to restore the mean
velocity field described by (2.57) and to initiate the vortex segment trajectories from
a position defined by the experimental visualization. We started the trajectory at a
rotor phase angle ψ of 180◦, which gives a minimum vortex–airframe separation of
four core radii. The vortex is then allowed to propagate freely under the constraints
of the vortex propagation model. A dimensionless timestep of 0.0002388 was applied,
corresponding to an advance in rotor phase angle of 0.02◦, although a much larger
timestep may be used until deformation of the vortex cross-section begins. The
simulation is continued until a vortex segment endpoint is predicted to penetrate the
airframe surface. Vortex trajectory, strength, core radius, axial velocity and airframe
surface pressure are experimental parameters available for comparison.

The predicted vortex trajectory from ψ = 190◦ to 260◦ is shown in figure 16, along
with the measured trajectory from Liou et al. (1990) at ψ = 210◦ and 240◦. The
coordinates are the global coordinates shown in figure 4. The trajectory matches well
in the (x, z)-plane but we see that the physical vortex moves toward the cylinder
more rapidly than the modelled vortex near the centreline of the airframe. These
results compare favorably with the simulation of Affes et al. (1993), showing that
axial velocity has little effect on vortex advection during this time interval.

The prediction shows that the modelled vortex is approaching the airframe more
slowly than the physical vortex. In figure 16(b), we see that the endpoints of the
experimental and numerical vortex trajectories coincide, while the points closer to the
cylinder do not. Increasing the magnitude of the downwash velocity in the numerical
model allows us to predict the midpoints, but then the endpoints no longer match.
This suggests that the linear-shear downwash velocity model in (2.51) is too simple.
Indeed, measurements immediately below the rotor but away from the airframe (Liou
et al. 1990) suggest that the v-velocity directly above the airframe may be more than
50% greater than that at the vortex endpoints.

To test our hypothesis, we developed a model to give a higher-order fit to the
downwash velocity. This is reasonable because we are not trying to predict the
downwash but simply use it as a boundary condition. The fit of downwash velocity
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Figure 17. Predicted trajectory of the box-vortex with the revised downwash model from ψ = 190◦
to 240◦. ©, experimental data at ψ = 210◦ and 240◦.
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airframe surface. ©, Experimental data.

from (2.57) was modified to give

v = −0.557(1 + A1 exp (−|x|/A2)− 0.1245x, (4.1)

where A1 and A2 are adjustable parameters. Through trial and error, these parameters
were set to 0.7 and 1.0, respectively, to give the best fit to the positional data.
Although there is no direct connection, it may be noted that this downwash model
also served to advect the straight vortex in a uniform manner near the airframe in
the comparisons presented previously. The resulting trajectory is seen in figure 17.
Note that comparison of all predicted results, including core radius, axial velocity
and surface pressure, were performed with the downwash models of (2.57) and (4.1).
Modifying the downwash distribution changes the timing, but not the magnitude of
the predictions. The revised downwash velocity profile is thus applied to compare the
model predictions with the experimental data.

Figure 18 shows the comparison of experimental vortex core height (the minor axis
of the visualized core as it deforms into an ellipse) from Mahalingam et al. (1997)
with the numerical predictions of the box-vortex-core height b at x = 0.

The comparison of surface pressure on top of the airframe is shown in figures 19
and 20. These figures reflect two sets of data from the same experimental facility, that
of Brand (1989) and of Kim & Komerath (1995), respectively. The surface pressures
15◦ from the top of the airframe to the advancing and retreating blade sides of the
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Figure 19. Pressure on the airframe surface directly above the airframe centreline as the vortex
approaches: (a) Rotor phase angle ψ = 210◦; (b) ψ = 222◦; (c) ψ = 228◦; (d) ψ = 234◦. ©, Brand’s
(1989) experimental data.

airframe are shown in figures 21 and 22, respectively. The experimental data are those
of Kim because Brand did not take pressure data on the sides of the airframe.

These results demonstrate substantially better prediction of the actual interaction
than has been previously accomplished (Mahalingam et al. 1997). The trends and
timing of the comparisons are quite reasonable. Core height predictions agree very
well with the experimental observations. Axial velocity values (not shown), do not
agree as well, with the experimental values stagnating earlier. However, these are very
difficult measurements to obtain, especially as the vortex core thins, because there is a
deficit of the reflective particles needed for the optical measurements in the core region.

The surface pressure coefficient shows excellent agreement on top of the airframe.
Comparing with Brand’s data in figure 19, both strengthening and weakening of
the suction peak is predicted with good accuracy considering that the presence of
blade passage effects in the experimental data are not modelled numerically. From the
comparison with Kim’s data in figure 20, we see that the magnitude of the suction peak
is somewhat less that that seen in the simulation or in Brand’s earlier measurements.
This may be explained by the use of Brand’s trajectory data to develop the downwash
profile given in (4.1). Kim did not repeat the trajectory measurements, so there may
be small differences in trajectory that could relate to significant differences in pressure.
Pressure recovery errors in the numerical results prevented prediction of experimental
results at rotor phase angles larger than those presented.



330 T. D. Radcliff, O. R. Burggraf and A. T. Conlisk

4

2

0

–2

–4

–6

–8

–10
–8 –7 –6 –5 –4 –3 –2 –1 0

(a)
4

2

0

–2

–4

–6

–8

–10

(b)

–8 –7 –6 –5 –4 –3 –2 –1 0

4

2

0

–2

–4

–6

–8

–10
–8 –7 –6 –5 –4 –3 –2 –1 0

S
ur

fa
ce

 p
re

ss
ur

e
co

ef
fi

ci
en

t, 
C

p

(c)
4

2

0

–2

–4

–6

–8

–10

(d)

–8 –7 –6 –5 –4 –3 –2 –1 0

Distance from rotor centre
on airframe axis, z

Distance from rotor centre
on airframe axis, z

S
ur

fa
ce

 p
re

ss
ur

e
co

ef
fi

ci
en

t, 
C

p

Figure 20. Pressure on the airframe surface directly above the airframe centreline as the vortex
approaches: (a) Rotor phase angle ψ = 210◦; (b) ψ = 222◦; (c) ψ = 228◦; (d) ψ = 234◦. ©, Kim’s
(1995) experimental data.

A notable discrepancy in the comparison of experimental and numerical results is
the z-position of the suction peaks, which differ by as much as several core radii. This
discrepancy was also noted in the results of Affes et al. (1993) who used the same
data. Study of the results shows that the numerical model predicts the suction peak
directly below the vortex position, as would be expected, while in the experiments, the
suction peak is systematically displaced by about two core radii from the visualized
vortex core at all rotor phase angles. Discussion with the experimenter (Brand 1999
private communication) suggests that this small error has inadvertently arisen from
a translation of the pressure sensors, a technique used to obtain pressure data more
closely spaced than the actual sensors. For this reason the shift has been removed
and this is reflected in the results presented in figures 19–22.

The surface pressures 15◦ from the top of the airframe to the advancing blade
and retreating blade sides, shown in figures 21 and 22, respectively, illustrate the
fundamental asymmetry of the pressure field. The trends of the pressure and most of
the magnitudes are in fair agreement. On the advancing blade side, suction increases
up to ψ = 234◦, indicating that the vortex is still stretching at this location. On the
retreating blade side, the numerical prediction peaks and withdraws by ψ = 234◦,
while the experimental data suggest that a reversal is just beginning. The magnitude of
the numerical prediction of the suction peak is substantially larger than the measured
value at most of the rotor phase angles on both sides of the airframe, as it is in the



Three-dimensional vortex–surface interactions 331

4

2

0

–2

–4

–6

–8

–10
–8 –7 –6 –5 –4 –3 –2 –1 0

(a)
4

2

0

–2

–4

–6

–8

–10

(b)

–8 –7 –6 –5 –4 –3 –2 –1 0

4

2

0

–2

–4

–6

–8

–10
–8 –7 –6 –5 –4 –3 –2 –1 0

S
ur

fa
ce

 p
re

ss
ur

e
co

ef
fi

ci
en

t, 
C

p

(c)
4

2

0

–2

–4

–6

–8

–10

(d)

–8 –7 –6 –5 –4 –3 –2 –1 0

Distance from rotor centre
on airframe axis, z

Distance from rotor centre
on airframe axis, z

S
ur

fa
ce

 p
re

ss
ur

e
co

ef
fi

ci
en

t, 
C

p

Figure 21. Pressure on the airframe surface 15◦ to the ABS of the airframe centreline as the vortex
approaches. (a) Rotor phase angle ψ = 210◦; (b) ψ = 222◦; (c) ψ = 228◦; (d) ψ = 234◦. ©, Kim’s
(1995) experimental data.

comparisons with Kim’s data on top of the airframe in figure 20. As discussed previ-
ously, this may result from the relative difficulty in resolving the exact position of the
intense vortex, particularly on the RBS side of the airframe. As shown in figure 2(a), a
small error in predicted position can lead to a large discrepancy in predicted pressure.

5. Discussion and conclusions
Our understanding of the importance of the vortex axial flow and core deformation

to accurate prediction of the airframe surface pressure during a collision is substan-
tially improved. Using an axisymmetric helical µ-vortex model, we have shown that
axial flow in the vortex core acts to resist vortex thinning and dilation in the region
of interaction. This flow also advects the thinned portion of the vortex away from the
interaction region while advecting the dilated portion toward the interaction region.
The net result is that increased core axial velocity causes reduced vortex thinning, or
even thickening, in the region of the vortex–surface interaction, so vorticity is spread
over a larger surface area and a more diffuse surface pressure trough is induced.
Whether this phenomenon alone can result in the suction reversal observed in exper-
iments as the vortex approaches within a core radius cannot be determined because
the results are compromised by modelling that allows vortex vorticity to exist within
the solid airframe.
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Figure 22. Pressure on the airframe surface 15◦ to the RBS of the airframe centreline as the vortex
approaches. (a) Rotor phase angle ψ = 210◦; (b) ψ = 222◦; (c) ψ = 228◦; (d) ψ = 234◦. ©, Kim’s
(1995) experimental data.

To bound vorticity in the core, the box-vortex model was formulated. In this model,
the effects of axial velocity are intrinsically connected to the effects of vortex core
flattening. With this model, we see that core flattening without axial velocity distributes
vorticity over a larger region of the airframe surface by spreading the vortex core
along the airframe axis. This effect gives a broader surface pressure trough of lower
magnitude. Adding axial velocity to this model results in less vortex thinning near
the surface, as discussed previously. Less vortex thinning means that the vortex must
flatten even more to maintain the core cross-sectional area and the vortex centreline-
to-airframe separation, so vorticity is distributed more widely still and the surface
pressure trough becomes yet more diffuse. Note that flattening of a vortex segment
actually increases the core axial velocity even though the core cross-sectional (ξ-η)
area remains constant. This occurs because the vortex vorticity component tangential
to the airframe surface increases as the core area in the (η, ζ)-plane decreases.

The same trends are predicted when the box-vortex model is applied to the experi-
mental case, although the curvature of the vortex complicates matters somewhat. In
previous predictions of the experimental results (Affes et al. 1993) the vortex core is
seen to thin strongly in the absence of axial core flow, which would delay the onset
of vortex flattening. With the current model, the axial velocity first inhibits vortex
thinning which subsequently results in prompt initiation of vortex-core flattening. The
combination of these two effects allows good prediction of the vortex core height and
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the width of the surface pressure trough at x = 0. As discussed before, the overall
surface-pressure predictions appear quite reasonable when one notes that the blade
passage effect is not modelled and that very small differences in predicted vortex
position on the sides of the airframe, perhaps resulting from inaccuracies in the
downwash velocity distribution, can cause large discrepancies in the magnitude of the
predicted pressure.

Several changes could improve the numerical predictions. Refinement of experi-
mental measurements applied as boundary or initial conditions for the model would
be useful. Particularly, the downwash velocity should be better represented to re-
place the empirical model used. Spatially varying circulation and axial velocity initial
conditions, if known, could also be applied in the current model with little revision.

The principal remaining limitation on the current model is the inability of the panel
representation of the airframe to enforce the zero-normal-velocity boundary condition
uniformly along the airframe surface as the strong vortex approaches. Vortex segment
endpoints are eventually predicted to pass through the airframe boundary, thereby
invalidating the velocity prediction and thus any further time advance. Better panel
methods, such as interpolation methods discussed by Terzi & Chiu (1997) or adaptive
panel griding, would allow computation of the collision to extend further in time. Also,
we believe the failure of the present panel model is the principal cause of any remaining
pressure integration error. Finally, improvement of the airframe panel boundary
condition would allow us to replace the vortex core deformation model, in which the
vortex boundary is empirically maintained outside of the airframe, with a model in
which the vortex core boundaries are advected by the calculated local velocity.

Further advance of the vortex using our inviscid model will ultimately require
modelling of viscous effects. As the vortex segments flatten against the airframe, they
will begin to merge with, and become indistinguishable from, the viscous boundary
layer on the airframe. The ends of the remaining inviscid vortex segments are then
expected to establish a normal terminus on the airframe surface, such as predicted by
Lee et al. (1998), and propagate along the sides of the airframe under the influence
of the rotor downwash, as seen in experiments. The boundary layer will act as a sink
for the vortex axial flow on the advancing blade side of the airframe and as a source
for the axial flow on the retreating blade side. Eventual reconnection of the vortex
ends below the airframe is yet another interesting problem.

The authors wish to recognize and thank the US Army Research Office and Dr
Thomas Doligalski for their support through grant DAAH04-93-G0048.
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